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Abstract. We propose a new approach for taking into account the Q2 dependence of measured asymmetry
A1. This approach is based on the similarities between the Q2 behaviours and between the shapes of the
spin-dependent structure function g1(x, Q2) and spin-averaged structure function F3(x, Q2). The analysis
is applied to available experimental data.

1 Introduction

In recent years there has been significant progress in the
study of the spin-dependent structure function (SF)
g1(x, Q2) (see [1]–[6]). The direct measurement of SF g1 is
a very elaborate procedure (see, however, [7]), and usually
its value is extracted from the spin-dependent asymmetry
A1 (see, for example [8,9]) in agreement with the formula

g1(x, Q2) = A1(x, Q2) · F1(x, Q2), (1)

where F1(x, Q2) is the spin-averaged SF.

The asymmetry A1(x, Q2) is closely connected with
the ratio of polarized and unpolarized cross-sections and
may be successfully measured with the cancellation of
many experimental uncertantities. Experimentally, asym-
metry is extracted only at a few points Q2

1i, ..., Q
2
ni for

each xi bin. To study the properties of g1(x, Q2) and to
calculate the values of spin-dependent sum rules ([10,11])
we have to know A1 as a function of Q2.

The most popular assumption applied to A1 ([12]) is

A1(x, Q2) = A1(x). (2)

This means that SFs g1 and F1 have the same Q2 de-
pendences, but this conclusion does not follow from the
theory. On the contrary, the behaviours of F1 and g1 as
functions of Q2 are expected to be different due to the dif-
ference between polarized and unpolarized splitting func-
tions1.
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1 Except the leading order of the quark-quark interaction.

There exist several approaches ([13]-[18]) to take into
account the Q2 dependence of A1. They are based on dif-
ferent approximate solutions for the DGLAP equations.
Some of them have been used already by the Spin Muon
Collaboration (SMC) and the E154 Collaboration, in the
most recent analyses of experimental data ([2] and [6],
respectively). Approaches [13]–[18] lead to similar results
for g1(x, Q2)2, which are in contrast with the calculations
based on equation (2).

In this article we suggest another method for studying
the Q2 dependence of A1, based on the observation that
the splitting functions of the DGLAP equations for, and
the shapes of, the SF g1 and F3 are similar for a wide
range of x. Our approach allows us to get the Q2 depen-
dence of A1 in a simple way (10) and leads to results (some
of which have recently been presented ([19])) that are sim-
ilar to the ones based on the DGLAP evolution.

2 The Q2 dependence of structure functions

Let us consider the Q2 evolution of the nonsinglet (NS)
and singlet (SI) parts of the SF separately.

For the SF F3, and the NS parts of g1 and F1, the
corresponding DGLAP equations can be presented as3

dgNS
1 (x, Q2)
dlnQ2 = −1

2
γ−

NS(x, α) ⊗ gNS
1 (x, Q2),

2 The form of the Q2 dependence for A1 is different in ap-
proaches [13]–[18]. However, all of them are in agreement re-
garding the weak Q2 dependence for moderate values of x and
the quite strong Q2 dependence for small values of x.

3 We use α(Q2) = αs(Q2)/4π.
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dFNS
1 (x, Q2)
dlnQ2 = −1

2
γ+

NS(x, α) ⊗ FNS
1 (x, Q2), and (3)

dF3(x, Q2)
dlnQ2 = −1

2
γ−

NS(x, α) ⊗ F3(x, Q2),

where the symbol ⊗ means the Mellin convolution:

f1(x) ⊗ f2(x) ≡
∫ 1

x

dz

z
f1(z)f2(

x

z
).

The splitting functions γ±
NS(x, α) are the reverse Mellin

transforms of the anomalous dimensions γ±
NS(n, α) =

αγ
(0)
NS(n)+α2γ

±(1)
NS (n)+O(α3) and the Wilson coefficients4

αb±(n) + O(α2):

γ±
NS(x, α) = αγ

(0)
NS(x) + α2

(
γ

±(1)
NS (x) + 2β0b

±(x)
)

+O(α3), (4)

where β(α) = −α2β0 − α3β1 + O(α4) is QCD β-function.
Equation (3) shows that the DGLAP equations for F3

and for the NS part of g1 are the same (they were obtained
exactly in the first two orders of the perturbative QCD5

[20]) and differ from the one for F1 already in the first
subleading order (γ+(1)

NS 6= γ
−(1)
NS ([21]), and b+

NS − b−
NS =

(8/3)x(1 − x)).
For the SI parts of g1 and F1, the evolution equations

are

dgS
1 (x, Q2)
dlnQ2 = −1

2

[
γ∗

SS(x, α) ⊗ gS
1 (x, Q2)

+γ∗
SG(x, α) ⊗ ∆G(x, Q2)

]
and

dFS
1 (x, Q2)
dlnQ2 = −1

2

[
γSS(x, α) ⊗ FS

1 (x, Q2)

+γSG(x, α) ⊗ G(x, Q2)
]
, (5)

where the SI splitting functions γSi(x, α), i = {S, G} are
represented as

γSS(x, α) = αγ
(0)
SS(x) + α2

(
γ

(1)
SS(x) + bG(x) ⊗ γ

(0)
GS(x)

+2β0bS(x)
)

+ O(α3) and

4 We consider here structure functions but not parton distri-
butions. Note also that b+

NS(n) and b−
NS(n) can be defined as

b1,NS(n) = b2,NS(n) − bL,NS(n) and b3,NS(n), respectively.
5 This is easy to demonstrate in any order of the perturbation

theory. The SFs g1 and F3 are the results of the γ5 matrix
contribution to the lepton and hadron parts of deep inelastic
cross-sections, respectively. In the NS case there is only one
γ-matrix trace, connecting the lepton and hadron parts. Its
contribution ∼ tr(γ5γµγνγαγβ ....) is the same in both cases
above. For the SI part of g1, there are diagrams with several
traces, which arise in the second order of perturbation QCD
and lead to the difference between the splitting functions of SF
F3 and the SI part of SF g1.

γSG(x, α) =
e

f

[
αγ

(0)
SG(x) + α2

(
γ

(1)
SG(x)

+bG(x) ⊗ (
γ

(0)
GG(x) − γ

(0)
SS(x)

)
+ 2β0bG(x)

+bS(x) ⊗ γ
(0)
SG(x)

)]

+O(α3), (6)

and e =
∑f

i e2
i is the sum of the charge squares of f

active quarks. Equations for the polarized singlet-splitting
functions γ∗

SS(x, α) and γ∗
SG(x, α) are similar. They can

be obtained via the following replacements (6): γ
(0)
SG(x) →

γ
∗(0)
SG (x), γ

(1)
Si (x) → γ

∗(1)
Si (x) and bi(x) → b∗

i (x), where
i = {S, G}.

With careful consideration of the quark parts of (5)
and (6) we see that the value of b∗

s(x) (bs(x)) is the same
as that of b−(x) (b+(x)). The difference between γ

−(1)
NS (x)

and γ
∗(1)
SS (x) + b∗

G(x) ⊗ γ
(0)
GS(x) is negligible because there

is not a power singularity at x → 0 (i.e., a singularity
at n → 1 in momentum space). Moreover, this difference
decreases at O(1 − x) as x → 1 ([24]). (In contrast, the
difference between γ

(1)
SS(x)+bG(x)⊗γ

(0)
GS(x) and γ

∗(1)
SS (x)+

b∗
G(x)⊗γ

(0)
GS(x) contains a power singularity at x → 0 (see

for example [20]).) Thus, the DGLAP equations for F3
and the SI part of g1 have close splitting functions, which
are essentially different from the splitting functions of the
SI part of F1.

The quark part of the SI of SF g1 itself contains two
components, valence and sea. The valence part does not
connect with the gluon, and obeys the DGLAP equation
similar to the first equation in (3). The sea part obeys the
first equation in (5), but its value seems to be quite small,
since it has not yet been observed experimentally.

The gluon distribution in g1 is not so important for
the modern data, ([14,15,9,18,22]), in contrast with the
unpolarized case; data are described well for extremely
different values of ∆G(x, Q2) and even for different signs
of its first moment. Hence we will neglect this term in our
analysis.

Thus, the valence component seems to dominate in
the SI part of g1 for the range of the present experimental
data6, and it allows us to expect a similarity between the
SI part of g1 and the SF F3.

As we saw above, the shapes and DGLAP equations
for g1 and F3 are very similar in the NS and SI analyses7,
and both of them differ from the corresponding equations
for F1. This similarity suggests that the Q2 dependences
for SF g1(x, Q2) and F3(x, Q2) are also similar.

6 For support of this point of view, see also the recent anal-
ysis by the E154 Collaboration, where the contributions of the
sea + gluon parts and the valence parts are divided, studied,
and presented in Fig. 2 ([6]).

7 The similar shapes of SF F3 and g1 in the range of measured
values of x can be seen also in [25].
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Fig. 1. Q2 dependence of the ratio
A1(x, Q2)/A1(x, 5GeV 2)
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Fig. 2. Structure function xgn
1 (x, Q2), evolved to Q2 =

5GeV 2 using equation (10); DGLAP NLO evolution; the
assumption that gn

1 /F n
1 is independent of Q2. The last

two sets are taken from [6]

The similarity between the Q2 dependence of F3(x, Q2)
and that of g1(x, Q2) may be supported also by some ar-
guments following from an analysis at x → 08. Although
all existing data in polarized DIS (excluding the first two
SMC points) are outside the region x ≤ 10−2, the study of
small x asymptotics is important for future data, as well

8 At x → 1 the behaviours of g1 and F3 (and F1, too) should
be similar because they are governed by valence quark distri-
butions.

as for an extrapolation of the present data from the small
x region.

The similarity of the splitting functions of SF F3 and
g1 have already been demonstrated; thus, we now turn to
the shapes of F3 and g1 at small x. It is well known that
SF F3 is governed, for small values of x, by the ρ-meson
trajectory; thus,

F3(x) ∼ x−1/2. (7)
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The Q2 evolution does not change this behaviour. For SF
g1, the situation is not so clear. Regge-like analysis [26]
shows that the NS part of g1 is governed by an a1 tra-
jectory, i.e., g1(x) ∼ x−αP (a1), with the intercept αP (a1)
having values 0 ≥ αP (a1) ≥ −1/2 ([27]). However, the
BFKL-inspired approach ([28]) leads to more singular be-
haviour for the NS part,

gNS
1 (x) ∼ x−0.45, (8)

which is close to (7). For the SI part of g1, the infor-
mation given is very poor. The BFKL-inspired approach
([29]) concludes that for small x, gSI

1 (x) ∼ x−1, yet when
in reality the SI part of g1

9 has not been observed at small
x. Indeed, the deutron SF gd

1(x), which is close to the SI
component, is comparable with zero at small x.

As a consequence, the shapes of the SF F3 and the NS
part of SF g1 seem to be close for small values of x also
(if the BFKL approach is correct). The SI part of g1 may
have another shape, but modern experimental data do not
allow for its study.

The analysis discussed above allows us to conclude
that the function A∗

1, defined as

A∗
1(x) =

g1(x, Q2)
F3(x, Q2)

, (9)

has to be practically Q2-independent in the whole region
of modern experimental data ([1]-[6]).

Consistent with (9), the measured asymmetry
A1(xi, Q

2
i ) can be found for some value of Q2, as:

A1(xi, Q
2) =

F3(xi, Q
2)

F3(xi, Q2
i )

· F1(xi, Q
2
i )

F1(xi, Q2)
· A1(xi, Q

2
i ). (10)

3 Calculation of A1(x, Q2) and Γ1(Q2)

To apply this approach, we used the SMC ([2]), E143 ([4]),
and E154 ([5,6]) Collaboration data10. To use the rela-
tion in (10) we parametrized the CCFR data on F2(x, Q2)
and xF3(x, Q2) [30] in the same form as the NMC fit of
the structure function F2(x, Q2) ([31]) (see Appendix).
To obtain SF F1(x, Q2), we take the parametrization of
the CCFR data on F2(x, Q2) ([30]) and the SLAC para-
metrization of R(x, Q2) ([32]) and use the relation

F1(x, Q2) =
F2(x, Q2)

2x(1 + R(x, Q2))
· (1 +

4M2x2

Q2 ), (11)

where M is the proton mass.
Using parametrizations of CCFR data ([30]) for both

SF xF3(x, Q2) and F2(x, Q2) in (10) allows us to avoid sys-
tematical uncertainties and nucleon correlation in nuclei.
Figure 1 shows the ratio A1(Q2)/A1(5GeV 2) obtained in
(10). Comparison of Fig. 1 with the results of the E154
Collaboration (Fig. 4 in [6]) shows reasonable agreement.

9 It is the sea component of the SI part of g1, that dominates
here if it has nonzero magnitude.
10 A similar analysis of the SMC data in [1] has been done in
[33] using old CCFR data ([35]).
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analyses of [13,14]. The last two sets are taken from [2]

The SF g1(x, Q2) was evaluated using (1), in which
the spin-averaged SF F1 has been calculated using the
NMC parametrization of F2(x, Q2) ([31]). Results are pre-
sented in Fig. 2 and Fig. 3 for the E154 and SMC data,
respectively. Our results are in excellent agreement with
the SMC and E154 Collaboration analyses that are based
on direct DGLAP evolution (see [2] and [6], respectively).

For comparison with the theory predictions on the sum
rules, we have calculated the first moment value of the
structure function g1 for different Q2 values,

Γ1 = Γ̃1 + ∆Γ̃1, (12)

where

Γ̃1(Q2) =
∫ xmax

xmin

g1(x, Q2)dx and (13)

∆Γ̃1(Q2) =
∫ xmin

0
g1(x, Q2)dx +

∫ 1

xmax

g1(x, Q2)dx

are the integrals of the measured kinematical x region,
and an estimation for unmeasured ranges, respectively.

The value of ∆Γ̃1 from the unmeasured x-regions was
estimated using original methods by owner collaborations.
We note here that the method of ∆Γ̃1 estimation may lead
to some underestimation of gp,d,n

1 (x, Q2) for small values
of x and, consequently, of Γ p,d,n(Q2) (see the careful anal-
ysis in [14]). To clear up this problem it is necessary to
have more precise data for small values of x.

Values of Γ1(Q2), which are obtained from the ex-
act solution of the DGLAP evolution equation ([2,6]) of
g1(x, Q2) and in our approach on the scaling of A∗

1, are
quite close to each other for all cases discussed here. Thus
all approaches lead to similar conclusions for Γ p,d,n(Q2)
and the results, in turn, strongly disagree with the theo-
retical predictions in [36]. Hence we will consider the effect
of A∗

1 scaling only for the Bjorken Sum Rule Γ p
1 − Γn

1 .

SMC and E143 deutron data give us the value of Γn
1 ,

Γ p
1 + Γn

1 =
2Γ d

1

1 − 1.5wd
, (14)
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Table 1. The values of Γ p
1 − Γ n

1 . Errors are shown only for
certain points in each set of data. Uncertainties in our analysis
are comparable with ones in [2–4,6]

Q2 (GeV2) 100 30 10 5 3
SMC proton [2] and deutron data [3]

A1-scaling 0.247 0.226 0.202 0.186 0.170
A∗

1-scaling 0.210 0.201 0.191 0.184 0.176
Analysis of [2] 0.183 0.181 ± 0.035

SMC proton [2] and E154 neutron data [6]
A1-scaling 0.221 0.209 0.194 0.183 0.171
A∗

1-scaling 0.194 0.190 0.185 0.181 0.176
E143 proton and deutron data [4]

A1-scaling 0.170 0.169 0.165 0.160 0.154
A∗

1-scaling 0.163 0.162 0.160 0.157 0.154
Analysis of [4] 0.164 ± 0.021 0.164

E143 proton ([4]) and E154 neutron data ([5,6])
A1-scaling 0.189 0.186 0.179 0.174 0.169
A∗

1-scaling 0.172 0.172 0.171 0.169 0.166
Analysis of [6] 0.171 ± 0.013
Analysis of [4] 0.170 ± 0.012
Theory 0.194 0.191 0.186 0.181 ± 0.002 0.177

where wd=0.05 is the probability of the deutron being in a
D-state. Knowledge of proton and neutron first momenta
Γ p,n

1 allows us to test the Bjorken Sum Rule:

Γ p−n
1 ≡

1∫
0

(gp
1(x, Q2) − gn

1 (x, Q2))dx = Γ p
1 − Γn

1 (15)

Table 1 compares these results with values published
by the SMC, E143 and E154 Collaborations and with the
theoretical predictions computed in the third order of the
QCD αs ([37]).

Let us now describe the main results, which follow from
Table 1 and Figs. 1–3.

– Our description of the Q2 evolution of the asymmetry
A1(x, Q2) has a very simple form (10) but its results
are consistent with powerful analyses ([14,15,6]).

– Results concerning g1(x, Q2) are in excellent agree-
ment with the SMC and E154 Collaborations’ anal-
yses, based on direct DGLAP evolution.

– Our method allows us to test sum rules simply and
accurately. Obtained results on the Γ p

1 −Γn
1 show that

experimental data strongly confirm the Bjorken Sum
Rule prediction.

4 Conclusion

We have considered the Q2 evolution of the asymmetry
A1(x, Q2) based on the similarity between the Q2 depen-

dences of the SFs g1(x, Q2) and F3(x, Q2)11. Obtained re-
sults on g1(x, Q2) are in very good agreement with the
corresponding results of the SMC and E154 Collabora-
tions, based on direct DGLAP evolution. Our tests of the
Ellis–Jaffe Sum Rules for the proton, deutron and neutron
yield results that are very close to the values published by
the Spin Muon, E143 and E154 Collaborations. However,
the variations of sum rule values coming due to the Q2 evo-
lution of asymmetry A1(x, Q2) have opposite signs for the
proton and deutron. This increases the similarity between
the experimental results and the theoretical predictions
regarding the Bjorken Sum.

We believe that future, more precise data will illumi-
nate a violation of our hypothesis (probably for very small
x values: x ≤ 10−3). This violation will indicate clearly the
appearance of nonzero contributions from the sea quark
and gluon components of SF g1(x, Q2), which should have
quite singular shapes at small values of x (see the careful
analysis in [38]).12 Thus, checking the Q2 dependence of
the ratio A∗

1 = g1/F3 against future precise data will allow
for a more a qualitative estimation of the shapes and the
Q2 dependences of gluon and sea quark distributions.
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Appendix

The parametrizations used for CCFR data [30] are:

xF3(x, Q2) = F a
3 ·

(
log(Q2/Λ2)
log(Q2

0/Λ2)

)F b
3

and

F2(x, Q2) = F a
2 ·

(
log(Q2/Λ2)
log(Q2

0/Λ2)

)F b
2

,

where

F a
3 = xC1 · (1 − x)C2 ·

(
C3 + C4 · (1 − x) + C5 · (1 − x)2

+ C6 · (1 − x)3 + C7 · (1 − x)4
)

,

F a
2 = xB1 · (1 − x)B2 ·

(
B3 + B4 · (1 − x) + B5 · (1 − x)2

+ B6 · (1 − x)3 + B7 · (1 − x)4
)

,

11 The useful parametrizations of SF F2(x, Q2) and
xF3(x, Q2) are obtained for new CCFR data and presented
in the Appendix.
12 The separation and study of SI and NS components with
similar shapes will require an elaborate procedure.
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Table 2. The values of the coefficients of CCFR data
parametrization

C1 C2 C3 C4 C5 C6

0.33092 3.5000 6.5739 -7.1015 2.5388 7.6944
C7 C8 C9 C10 C11

-8.4285 4.9135 -4.9857 -8.1629 1.8193
B1 B2 B3 B4 B5 B6

-0.06101 3.5000 4.9728 -3.1309 -1.3361 0.94242
B7 B8 B9 B10 B11

0.11729 -0.92024 -1.6489 0.61776 0.38910

F b
3 = C8 + C9 · x +

C10

x + C11
,

F b
2 = B8 + B9 · x +

B10

x + B11
,

and Q2
0 = 20 GeV2, Λ = 337 MeV. The values of Q2

0
and Λ are fixed, consistent with the CCFR analysis ([30]).
The values of the coefficients Ci (i = 1, ..., 11) and Bi

(i = 1, ..., 15) are given in Table 2.
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